AMYGING

AMYGING

AMYGING – Holistically sustainable multi-modal β-amyloid imaging

AMYGING will demonstrate in a zebrafish embryo model that natural polyphenol-based carrier systems hold great potential as natural actives useful to form the basis of a highly modular amyloid imaging toolbox suitable for in vivo MRI and difference-fluorescence imaging.

Out-of-the-box approaches for combining traditional amyloid-sensing structures with insights from nanotechnology, molecular electronics and inherent characteristics of natural polyphenols allow for the simultaneous realization of multimodal imaging probes.

AMYGING aims at the implementation of a screening platform for highly sensitive detection of misfolded Aβ-oligomers in the cerebrospinal fluid of Alzheimer’s Disease patients via tunable nanoparticles (NPs). These NPs comprise a core of natural condensed polyphenolic (PNPs) structure complexing gadolinium ions and an outer layer of PNPs that are functionalized with amyloid-sensing small actives (ASSAs), a combination which leads to effectively increased contrast agent concentration in the immediate proximity of Aβ-oligomers for optimum bimodal imaging.

Call: PRIN2022

Grant Agreement: 202295845T

Project Coordinator: Margherita Brindisi (UNINA)

UNIMIB WP leader: Heiko Lange (WP2 Leader), Anita Colombo (WP3 Leader)

Scientific Publications 2023

  • Bengalli RD, Zerbi G, Lucotti A, Catelani T, Mantecca P. Carbon nanotubes: Structural defects as stressors inducing lung cell toxicity. Chem Biol Interact. 2023 Sep 1;382:110613. https://doi.org/10.1016/j.cbi.2023.110613
  • Botto L, Lonati E, Russo S, Cazzaniga E, Bulbarelli A, Palestini P. Effects of PM2.5 Exposure on the ACE/ACE2 Pathway: Possible Implication in COVID-19 Pandemic. Int J Environ Res Public Health. 2023 Mar 1;20(5):4393. https://doi.org/10.3390/ijerph20054393
  • Bragato C, Pistocchi A, Bellipanni G, Confalonieri S, Balciunie J, Monastra FM, Carra S, Vitale G, Mantecca P, Cotelli F, Gaudenzi G. Zebrafish dnm1a gene plays a role in the formation of axons and synapses in the nervous tissue. J Neurosci Res. 2023 Apr 9. https://doi.org/1002/jnr.25197.
  • Gualtieri M, Carriere M, Mantecca P. Hazard, Distribution and Exposure of Particulate Pollution from Indoor and Outdoor Environments.Toxics. 2023 Sep 12;11(9):772. https://doi.org/10.3390/toxics11090772
  • Kose O, Béal D, Motellier S, Pelissier N, Collin-Faure V, Blosi M, Bengalli R, Costa A, Furxhi I, Mantecca P, Carriere M. Physicochemical Transformations of Silver Nanoparticles in the Oro-Gastrointestinal Tract Mildly Affect Their Toxicity to Intestinal Cells In Vitro: An AOP-Oriented Testing Approach. Toxics. 2023; 11(3):199. https://doi.org/10.3390/toxics11030199
  • Kose O, Mantecca P, Costa A, Carrière M. Putative adverse outcome pathways for silver nanoparticle toxicity on mammalian male reproductive system: a literature review. Part Fibre Toxicol. 2023 Jan 5;20(1):1. https://doi.org/1186/s12989-022-00511-9
  • Marchetti S., Gualtieri M., Pozzer A, Lelieveld J., Hansell A. L., Colombo A., Mantecca P. On fine particulate matter and COVID-19 spread and severity: an in vitro toxicological plausible mechanism. Environ Int. 179 (2023) 108131. https://doi.org/10.1016/j.envint.2023.108131
  • Moschini E, Colombo G, Chirico G, Capitani G, Dalle-Donne I, Mantecca P. Biological mechanism of cell oxidative stress and death during short-term exposure to nano CuO. Sci Rep. 2023 Feb 9;13(1):2326. https://doi.org/1038/s41598-023-28958-6
  • Motta G, Gualtieri M, Saibene M, Bengalli R, Brigliadori A, Carrière M, Mantecca P. Preliminary Toxicological Analysis in a Safe-by-Design and Adverse Outcome Pathway-Driven Approach on Different Silver Nanoparticles: Assessment of Acute Responses in A549 Cells. Toxics. 2023; 11(2):195. https://doi.org/10.3390/toxics11020195

AMROCE – AGAINST CECs (AMR BACTERIA AND ANTIBIOTICS) IN WATER BODIES

AMROCE – AGAINST CECs (AMR BACTERIA AND ANTIBIOTICS) IN WATER BODIES

Antibiotics, pathogens and antimicrobial resistant (AMR) bacteria are contaminants of emerging concern (CECs) in water bodies associated to intensive fish and inland animal farming.  AMROCE aims at reducing antibiotic pollution and spread of AMR bacteria in the entire water cycle through a platform of novel antibiotic-free antimicrobial products. In the project, antimicrobial/antibiofilm fish cage nets and wastewater filtration membranes will be developed through polymer and surface nano-engineering. Marine-derived antimicrobial agents and antibiofilm enzymes will be nano-formulated as alternative to antibiotics for fish and animal feed supplement. Human and environmental nanosafety during the manufacturing and use of the novel nanotechnology-embedded products will be continuously evaluated to anticipate nanosafety issues.

UNIMIB is leader of WP3, which aims at identifying the parameters related to the safety of the nano-formulation process for both workers and users, considering not only the existing regulation, but also the gaps existing in the legislation and norms.

Project Coordinator: Tzanko Tzanov (UPC)

UNIMIB WP/Task leader: Paride Mantecca (WP3)

Please visit the webiste of the project amroce.eu

New Article published!

New Article published!

What is the connection between pollution and COVID19?

The POLARIS “Health and Environmental Sustainability” Research Centre has demonstrated how air pollution can play a crucial role in the transmission of the SARS-CoV-2 virus and the resulting severity of the COVID-19 disease. The study, recently published in the journal Environment International, paves the way for a greater understanding of how atmospheric particulate matter can influence and facilitate the possibility of contracting respiratory diseases transmitted by viruses or bacteria and provides fundamental information to understand how the population responds to the same threat depending on the quality of the environment in which it lives.

To find out more, read the interview with our researchers, edited by the press office of the University of Milan-Bicocca.

Further information on Environment International:

Marchetti S, Gualtieri M, Pozzer A, Lelieveld J, Saliu F, Hansell AL, Colombo A, Mantecca P. On fine particulate matter and COVID-19 spread and severity: An in vitro toxicological plausible mechanism.

 

IT-BEST

IT-BEST

IT-BEST project aims to characterise the formation, the atmospheric ageing and the toxicological effects of ultrafine particles (UFP) resulting from the combustion of biofuels. Indeed, combustion processes involving biofuels may emit UFP that are actually different in size, chemical composition and health effects than those from conventional fossil fuels.

The special interest in UFP is related to evidence, currently available in the literature, that biofuels reduce the total particulate matter emitted, but simultaneously produce smaller particle size with a relevant number concentration, which are potentially more toxic.

Experimental measurements using an atmospheric simulation chamber, will be performed to determine the effect of different biofuels composition, on UFP numbers, size, chemical composition and their transformation under relevant atmospheric conditions as well as their toxicological assessment.

The expected outcome of the research project will result in a better the understanding of different nature and health-related toxicological effects of the carbonaceous particle formed during the combustion of biofuels.

Call: PRIN2022

Grant Agreement: 2022CH87SA

Project Coordinator: Dario Massabò (UNIGE) and Gianluigi De Falco (UNINA Federico II)

UNIMIB WP leader: Maurizio Gualtieri

Scientific Publications 2022

  • Bengalli B, Zerboni A, Bonfanti P, Saibene M, Mehn D, Cella C, Ponti J, La Spina R, Mantecca P. Characterization of microparticles derived from waste plastics and their bio-interaction with human lung A549 cells. J Appl Toxicol. 2022 Dec;42(12):2030-2044. doi: 10.1002/jat.4372. Epub 2022 Aug 30. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/full/10.1002/jat.4372
  • Bonfanti P, Colombo A, Saibene M, Motta G, Saliu F, Catelani T, Mehn D, La Spina R, Ponti J, Cella C, Floris P, Mantecca P. Microplastics from miscellaneous plastic wastes: Physico-chemical characterization and impact on fish and amphibian development. Ecotoxicol Environ Saf. 2021 Dec 1;225:112775. doi: 10.1016/j.ecoenv.2021.112775. Epub 2021 Sep 15. https://www.sciencedirect.com/science/article/pii/S0147651321008873
  • Bragato C, Mostoni S, D’Abramo C, Gualtieri M, Pomilla FR, Scotti R, Mantecca P. On the In Vitro and In Vivo Hazard Assessment of a Novel Nanomaterial to Reduce the Use of Zinc Oxide in the Rubber Vulcanization Process. Toxics. 2022; 10(12):781. https://doi.org/10.3390/toxics10120781
  • Ferrero L, Scibetta L, Markuszewski P, Mazurkiewicz M, Drozdowska V, Makuch P, Jutrzenka-Trzebiatowska P, Zaleska-Medynska A, Andò S, Saliu F, Nilsson E. D, Bolzacchini E. Airborne and marine microplastics from an oceanographic survey at the Baltic Sea: An emerging role of air-sea interaction? Sci Total Environ. 2022 Jun 10;824:153709. doi: 10.1016/j.scitotenv.2022.153709. Epub 2022 Feb 9. https://pubmed.ncbi.nlm.nih.gov/35150686/
  • Ivanova A, Ivanova K, Fiandra L, Mantecca P, Catelani T, Natan M, Banin E, Jacobi G, Tzanov T. Antibacterial, Antibiofilm, and Antiviral Farnesol-Containing Nanoparticles Prevent Staphylococcus aureus from Drug Resistance Development. Int J Mol Sci. 2022 Jul 7;23(14):7527. doi: 10.3390/ijms23147527. https://www.mdpi.com/1422-0067/23/14/7527
  • Massimino L, Bulbarelli A, Corsetto P. A, Milani C, Botto L, Farina F, Lamparelli L. A, Lonati E, Ungaro F, Maddipati K. R, Palestini P, Rizzo A. M. LSEA Evaluation of Lipid Mediators of Inflammation in Lung and Cortex of Mice Exposed to Diesel Air Pollution. Biomedicines. 2022 Mar 19;10(3):712. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8945792/
  • Perucca, M.; Capuano, L.; Magatti, G.; Rosa, F.; Mantecca, P. Environmental Performance of Road Asphalts Modified with End-of-Life Hard Plastics and Graphene: Strategies for Improving Sustainability. Processes 2022, 10, 2151. https://doi.org/10.3390/pr10102151
  • Traina G, Bolzacchini E, Bonini M, Contini D, Mantecca P, Caimmi S. M. E, Licari A. Role of air pollutants mediated oxidative stress in respiratory diseases. Pediatr Allergy Immunol. 2022 Jan;33 Suppl 27(Suppl 27):38-40. https://pubmed.ncbi.nlm.nih.gov/35080317/
  • Zerboni A, Rossi T, Bengalli R, Catelani T, Rizzi C, Priola M, Casadei S, Mantecca P. Diesel exhaust particulate emissions and in vitro toxicity from Euro 3 and Euro 6 vehicles. Environ Pollut. 2022 Mar 15;297:118767. https://www.sciencedirect.com/science/article/pii/S0269749121023496?via%3Dihub

BIOMAT

BIOMAT

BIOMAT – Open  Innovation Test Bed for Nano-Enabled Bio-Based PUR Foams and composites

The POLARIS Research Center is involved in the European BIOMAT project, funded by the European Commission in the Horizon 2020 framework (Grant Agreement nr.) with the aim of establishing an Open Innovation Test Bed (BIOMAT-TB) with a Single-Entry Point (SEP) . The aim of this project is to accelerate a sustainable European bioeconomy through the development of nanomaterial-based and advanced polyurethane foams (PUR Foams) for various companies (building, construction, automotive, furniture, textiles).

Project ID:953270; Call ID: H2020-EU.2.1.3. – INDUSTRIAL LEADERSHIP – Leadership in enabling and industrial technologies – Advanced materials;   H2020-EU.2.1.2. – INDUSTRIAL LEADERSHIP – Leadership in enabling and industrial technologies – Nanotechnologies

Project coordinator: Dr. Mariana Ornelas (CENTI)

Dissemination Manager: Dr. Pnina Dan (OSM-DAN LTD).

Partner UNIMIB – POLARIS Prof. Paride Mantecca is leader of WP7 – Recycling technologies, nanosafety and regulatory issues with specific focus on Nanosafety and toxicology (Task 7.2).

Further information can be found at the link.

Discover more on the project here!

 

Research

Research

The Interdepartmental Research Centre called “Environmental Health and Sustainability – POLARIS” aims to increase and integrate the state of knowledge in the following macro-areas of research:

AIR QUALITY AND HEALTH

Monitoring of air quality in indoor and outdoor environments and study of the impact on human and environmental health, with focus on the presence of air contaminants and the spread of pathogens.

Recent Projects:

MUSA
IT-BEST

To find out more, visit the dedicated page

INNOVATIVE, SAFE AND SUSTAINABLE TECHNOLOGIES

Support for the development of safe, sustainable and innovative (nano)technologies, with assessment of their safety during the entire life cycle (circularity). Study of emerging contaminants, their impact on health and risk prevention and mitigation strategies.

Recent Projects:

INTEGRANO
AMYGIN

To find out more, visit the dedicated page

ENVIRONMENTAL ECONOMICS AND SOCIOLOGY

Evaluation of the environmental, economic and social impacts of products and processes; development of environmental policies with a view to sustainability and circularity.

Recent Projects:

To find out more, visit the dedicated page