Discover Biomat Project results!

Discover Biomat Project results!

BIOMAT Project UCLM led by María Luz Sánchez Silva and a consortium of 25 entities developed sustainable bio-PUR foams with nanotechnology, ready to transform construction, automotive, and furniture industries. Innovation for a greener future.

A big step towards innovation! 🚀

For the past four years, BIOMAT has been at the forefront of sustainable innovation, transforming bio-based materials into game-changing solutions for industries across Europe. This video is a heartfelt look back at BIOMAT’s journey: four years of dedication, collaboration, and remarkable achievements.

Discover all the details of the results from our BIOMAT project and see BIOMAT’s Final Results Video here!

Visit our dedicated page to learn more about the project.

 

Sustainability and the City – Listen to the podcast

Sustainability and the City – Listen to the podcast

To disseminate the research carried out by the researchers of the MUSA project, the podcast “Sustainability and the city” was created, which aims to create a widespread and participatory culture on sustainability in the territory.

What does the MUSA project deal with?

MUSA – Multilayered Urban Sustainability Action, finanziato dall’Unione Europea – NextGeneration EU was born as a response to the challenges that our metropolitan reality faces and will face in the transition towards environmental, economic and social sustainability.

The project involves universities, companies and local authorities.

The podcast, curated by the Open Air Lab research team of the University of Milano-Bicocca, aims to answer the following question:

What is urban sustainability? And what can be done to achieve it?

The podcast brings together the voices and ideas of a large panel of experts to discover how Milan, an urban laboratory par excellence, can become a model city in terms of livability, economic sustainability, environmental responsibility and social justice.

The first season of the podcast involves biologists, economists, physicists, sociologists, lawyers, geographers and engineers from the following universities: Università degli Studi di Milano – Bicocca, Università degli Studi di Milano, Politecnico di Milano e Università Bocconi di Milano.

The various episodes discuss biodiversity and urban greenery, but also “access to the sky” to promote scientific education, social equity and inclusion to build a more democratic future, as well as active participation by citizens, for example in the design of squares and public spaces.

In the episode “Breathing SustainabilityParide Mantecca, associate professor of Applied Biology at the University of Milan-Bicocca and Scientific Director of the POLARIS Interdepartmental Research Centre, intervenes.

Mantecca explains how, starting from the study of human biology in its relationship with environmental factors, the quality of air in urban environments has an impact on the health and well-being of citizens. In particular, he illustrates how research aims at the transformation of urban environments and how important citizen awareness is with respect to collective health and well-being.

Listen to the podcast!

For more information about MUSA, visit the website.




ASINA

ASINA

The Safe-by-Design concept (SbD) incorporates safety of nano-enabled product (NEP) at the design stage of the production process. SbD reverses the paradigm of downstream risk analysis and management (‘is it safe?’, ‘can it be controlled?’, ‘does it transform?’) and pursues the production of less hazardous nano-products affording reduced exposure, mediated by the release of nanomaterials during the life-cycle. The SbD production of NEPs has been recently elaborated upon, and several EU funded projects have provided some tools, databases, and case studies for its implementation.

Despite the advantages that can be obtained, the current state of the art indicates that industrial production is struggling to activate the SbD approach and the fast industrial uptake of engineered nanomaterials (NMs) is missing or unsafely implemented. The delay of nanomanufacturing implementation in the industry is due to incorrect use, lack of NMs culture, and/or difficult access to better quality NMs due to cost or logistics reasons. Psychological difficulties due to the use of unregulated substances, easy access to non-quality-certified NMs, difficulties in following the fast technological evolution of NMs also play a role.

ASINA aims to:

  • support the fast industrial uptake of nanotechnology by providing Safe-by-Design solutions and supporting tools;
  • to give entrepreneurs knowledge and awareness of Safe-by-Design potential;
  • to increase confidence in Safe-by-Design nanomanufacturing by improving the interaction and integration of different stakeholders (entrepreneurs, scientists, regulators, innovators, policy makers).

For this purpose, the proposal will take into consideration the important nano design features of coating and encapsulation and related Value Chains (VCs). ASINA will develop a specific Safe-by-Design Management Methodology, consistent with modern business management systems, to deliver Safe-by-Design solutions and inform design decisions. The project will establish a pilot action, involving test beds and pilot plants, for testing and validating the methodology contents as specific implementations that can be generalized to other engineered nanomaterials, nano-enabled products and industrial case studies. ASINA will finally export the methodology to the industry through a roadmap (including guidelines, analytical tools, best practices) and other standardization deliverables such as CEN-CWA, as a realistic way to ensure diffusion of the ASINA SMM and its industrial implementation worldwide.

PROJECT DETAILS:

  • PROJECT TITLE: Anticipating Safety Issues at the Design Stage of NAno Product Development
  • ACRONYM: ASINA
  • START DATE: 01 March 2020
  • END DATE: 28 February 2024
  • TOPIC: NMBP-15-2019
    Safe by design, from science to regulation: metrics and main sectors (RIA)
  • EU CONTRIBUTION: 5,998,386.06 euro

Project Coordinator: Anna Luisa Costa

Partner UNIMIB – POLARIS: Paride Mantecca WP2 leader

This project has received funding from the European Union’s Horizon 2020 research and innovation programme (grant agreement: 862444).

Read more:

ASINA Web site

INTEGRANO

INTEGRANO

The Safe and Sustainable by Design (SSbD) framework aims to steer the innovation process towards the green and sustainable industrial transition, substitute or minimise the production and use of substances of concern, and minimise the impact on health, climate and the environment during sourcing, production, use and end-of-life of chemicals, materials and products. However, SSbD implementation to nanomaterials (NMs) is hampered by a lack of harmonized or specific data and datasets which poses a challenge to the design of safe and sustainable NMs and their incorporation into nano-enabled products (NEPs).

INTEGRANO aims to:

• Support decision making in NM development, enabling stakeholders (scientists, material engineers, policymakers) to tackle the SSbD challenge in the NM context

• Promote the design and redesign of NMs and NEPs by reducing R&D and approval lead time, minimising costs and increasing data transparency

• To support industry by reducing research and technological development and innovation risk related to safety and sustainability by enabling impact-based informed investment decisions

UNIMIB is project coordinator of the project and leader of WP3, which aims at nano-tox and nano eco-tox data generation.

Call: HORIZON-CL4-2023-RESILIENCE-01-22

Grant Agreement: 101138414

Project Coordinator: Paride Mantecca (UNIMIB)

UNIMIB WP leader: Maurizio Gualtieri (WP3 Leader)

Further information can be found at the link

INTEGRANO

INTEGRANO

UNIMIB is coordinator of a new Horizon Europe project: INTEGRANO (GA. 101138414).

In line with the current guidelines for Safe and Sustainable by Design – SSbD chemicals and materials, INTEGRANO proposes a general assessment approach based on quantitative evidence to be applied in practice for specific Nano Materials (NMs) design cases.
INTEGRANO ambition is to set the basis for a new paradigm based on standardised frameworks and by creating suitable NMs datasets as well as Nanospecific impact categories of NMs through their Life Cycle Stages (LCS), applied to specific design cases assessment.

12 partners from 8 different countries participate in the hashtagIntegrano Project. This network allows for different expertises and skills within the project, which complement and support each other.

For further information visit INTEGRANO page, the website INTEGRANO – INTEGRANO or the Linkedin page.

AMROCE – AGAINST CECs (AMR BACTERIA AND ANTIBIOTICS) IN WATER BODIES

AMROCE – AGAINST CECs (AMR BACTERIA AND ANTIBIOTICS) IN WATER BODIES

Antibiotics, pathogens and antimicrobial resistant (AMR) bacteria are contaminants of emerging concern (CECs) in water bodies associated to intensive fish and inland animal farming.  AMROCE aims at reducing antibiotic pollution and spread of AMR bacteria in the entire water cycle through a platform of novel antibiotic-free antimicrobial products. In the project, antimicrobial/antibiofilm fish cage nets and wastewater filtration membranes will be developed through polymer and surface nano-engineering. Marine-derived antimicrobial agents and antibiofilm enzymes will be nano-formulated as alternative to antibiotics for fish and animal feed supplement. Human and environmental nanosafety during the manufacturing and use of the novel nanotechnology-embedded products will be continuously evaluated to anticipate nanosafety issues.

UNIMIB is leader of WP3, which aims at identifying the parameters related to the safety of the nano-formulation process for both workers and users, considering not only the existing regulation, but also the gaps existing in the legislation and norms.

Project Coordinator: Tzanko Tzanov (UPC)

UNIMIB WP/Task leader: Paride Mantecca (WP3)

Please visit the webiste of the project amroce.eu

BIOMAT

BIOMAT

BIOMAT – Open  Innovation Test Bed for Nano-Enabled Bio-Based PUR Foams and composites

The POLARIS Research Center is involved in the European BIOMAT project, funded by the European Commission in the Horizon 2020 framework (Grant Agreement nr.) with the aim of establishing an Open Innovation Test Bed (BIOMAT-TB) with a Single-Entry Point (SEP) . The aim of this project is to accelerate a sustainable European bioeconomy through the development of nanomaterial-based and advanced polyurethane foams (PUR Foams) for various companies (building, construction, automotive, furniture, textiles).

Project ID:953270; Call ID: H2020-EU.2.1.3. – INDUSTRIAL LEADERSHIP – Leadership in enabling and industrial technologies – Advanced materials;   H2020-EU.2.1.2. – INDUSTRIAL LEADERSHIP – Leadership in enabling and industrial technologies – Nanotechnologies

Project coordinator: Dr. Mariana Ornelas (CENTI)

Dissemination Manager: Dr. Pnina Dan (OSM-DAN LTD).

Partner UNIMIB – POLARIS Prof. Paride Mantecca is leader of WP7 – Recycling technologies, nanosafety and regulatory issues with specific focus on Nanosafety and toxicology (Task 7.2).

Further information can be found at the link.

Discover more on the project here!

 

ASINA – Anticipating Safety Issues at the Design Stage of NAno Product Development

ASINA – Anticipating Safety Issues at the Design Stage of NAno Product Development

Il progetto Horizon 2020 ASINA (Anticipating safety issues at the design stage of nano product development) si propone di implementare strategie di “safe-by-design” per lo sviluppo di nanomateriali intrinsecamente sicuri, che siano a basso rischio, per la salute dell’uomo e dell’ambiente. ASINA è coordinato dal Cnr-ISTEC che vede la partecipazione di 21 membri, tra i quali centri di ricerca, università, SMEs, e oranizzazioni non governative (NGOs) europee e non, afferenti a 8 diversi Paesi europei. Il titolo della call alla quale abbiamo risposto è: “Safe for design: from science to regulation”.

Project Coordinator Prof.  Anna Luisa Costa

Dissemination Manager Dr. Isella Vicini

Partner UNIMIB – POLARIS (Paride Mantecca) is leader of WP2 -MATERIAL SAFETY DESIGN CRITERIA, i cui obbiettivi sono:

  • determinare i design criteria per l’esposizione a NMs, tramite l’identificazione di parametri p-chem (chimico-fisici) che modulano le risposte biologiche in termini di scenari di esposizione
  • determinare i design criteria per l’esposizione a NMs, tramite l’identificazione di parametri p-chem (chimico-fisici) che modulano risposte biologiche in seguito ad un evento molecolare iniziale e/o specifici step presenti all’interno di adverse outcome pathways (AOPs) già caratterizzati
  • utilizzo e adattamento di frameworks per calcolo del rischio (risk assessment) nel contesto di ASINA, fornendo indicazioni pratiche per il read-across di materiali

Per informazioni:

ASINA Web site

CNR Web site

Twitter