MEETmeTONIGHT 2024

MEETmeTONIGHT 2024

MEETmeTonight, the event dedicated to scientific dissemination during the European Researchers’ Night, returns to Milan. This new edition includes two days of free initiatives open to all ages with stands, talks, workshops and shows.

Heart of the program are the 5 European Missions – adaptation to climate change; fight against cancer; protection of oceans, seas, lakes and rivers; climate-neutral and intelligent cities; soil health – expressed in numerous activities involving professors, researchers and young PhDs.

The event is organized by 5 universities in Milan – University of Milan-Bicocca, University of Milan, Bocconi University, Polytechnic University of Milan and Vita-Salute San Raffaele University – and by formicablu. It is a unique opportunity to get closer to the world of research, science and innovation.

In this context, the POLARIS research centre will be present at the event with a thematic stand at the Science Park in Viale Sarca (near Bicocca Stadium). At the SC06 stand entitled “SMART SENS – test the quality of your environment!” the researchers will show their research activities to the public.

The proposed activity aims to explore the topic of air quality from different points of view. The stand includes various instruments for measuring air pollutants, from scientific-level instruments to low-cost instruments, such as ‘smart’ sensors used by the POLARIS Interdepartmental Centre within the Open-Living lab of the MUSA – Multilayered Urban Sustainability Action project, funded by the European Union – NextGenerationEU, PNRR Mission 4 Component 2 Investment Line 1.5: Creation and strengthening of “innovation ecosystems”, construction of “territorial R&D leaders” (Spoke 1 – Urban Regeneration. City of Tomorrow, WP1).

The public will learn how these instruments work and the main environmental monitoring techniques. Additionally, part of the experience also includes an in-depth look at the effects of these pollutants on our respiratory system.

In the afternoon, researchers from the POLARIS Centre will also be involved in the workshop entitled “What do you breathe in your neighborhood? Understanding the urban environment by walking” organized together with researchers from CEMTET (Research Center on Mobility, Tourism and Territory) which will be held in the U7 building (via Padre Gerardo Beccaro 20).

The workshop, aimed at adults and boys and girls aged 14 and up, offers a collective experience of observing the Bicocca district to explore its accessibility and inclusiveness. You can participate in this workshop in two time slots (14:00-16:30, 16:30-19:00). Sign up to attend: registration is required on Eventbrite at the link. There are 15 spots available for each time slot.

The quality of the air we breathe every day is often influenced by our lifestyle choices, which can determine the release of particles and other pollutants into the atmosphere, with a huge impact on our health. 

The activity proposed by the workshop presents an interdisciplinary and interactive approach to explore the topic of air quality from different points of view. The proposal for an itinerant activity aims to collect data on the air quality of the neighborhood, also considering how different sources of pollutants in closed (indoor) and open (outdoor) environments or how mobility choices can affect personal exposure.

Check out the program for more information.

ASINA

ASINA

The Safe-by-Design concept (SbD) incorporates safety of nano-enabled product (NEP) at the design stage of the production process. SbD reverses the paradigm of downstream risk analysis and management (‘is it safe?’, ‘can it be controlled?’, ‘does it transform?’) and pursues the production of less hazardous nano-products affording reduced exposure, mediated by the release of nanomaterials during the life-cycle. The SbD production of NEPs has been recently elaborated upon, and several EU funded projects have provided some tools, databases, and case studies for its implementation.

Despite the advantages that can be obtained, the current state of the art indicates that industrial production is struggling to activate the SbD approach and the fast industrial uptake of engineered nanomaterials (NMs) is missing or unsafely implemented. The delay of nanomanufacturing implementation in the industry is due to incorrect use, lack of NMs culture, and/or difficult access to better quality NMs due to cost or logistics reasons. Psychological difficulties due to the use of unregulated substances, easy access to non-quality-certified NMs, difficulties in following the fast technological evolution of NMs also play a role.

ASINA aims to:

  • support the fast industrial uptake of nanotechnology by providing Safe-by-Design solutions and supporting tools;
  • to give entrepreneurs knowledge and awareness of Safe-by-Design potential;
  • to increase confidence in Safe-by-Design nanomanufacturing by improving the interaction and integration of different stakeholders (entrepreneurs, scientists, regulators, innovators, policy makers).

For this purpose, the proposal will take into consideration the important nano design features of coating and encapsulation and related Value Chains (VCs). ASINA will develop a specific Safe-by-Design Management Methodology, consistent with modern business management systems, to deliver Safe-by-Design solutions and inform design decisions. The project will establish a pilot action, involving test beds and pilot plants, for testing and validating the methodology contents as specific implementations that can be generalized to other engineered nanomaterials, nano-enabled products and industrial case studies. ASINA will finally export the methodology to the industry through a roadmap (including guidelines, analytical tools, best practices) and other standardization deliverables such as CEN-CWA, as a realistic way to ensure diffusion of the ASINA SMM and its industrial implementation worldwide.

PROJECT DETAILS:

  • PROJECT TITLE: Anticipating Safety Issues at the Design Stage of NAno Product Development
  • ACRONYM: ASINA
  • START DATE: 01 March 2020
  • END DATE: 28 February 2024
  • TOPIC: NMBP-15-2019
    Safe by design, from science to regulation: metrics and main sectors (RIA)
  • EU CONTRIBUTION: 5,998,386.06 euro

Project Coordinator: Anna Luisa Costa

Partner UNIMIB – POLARIS: Paride Mantecca WP2 leader

This project has received funding from the European Union’s Horizon 2020 research and innovation programme (grant agreement: 862444).

Read more:

ASINA Web site

INTEGRANO

INTEGRANO

The Safe and Sustainable by Design (SSbD) framework aims to steer the innovation process towards the green and sustainable industrial transition, substitute or minimise the production and use of substances of concern, and minimise the impact on health, climate and the environment during sourcing, production, use and end-of-life of chemicals, materials and products. However, SSbD implementation to nanomaterials (NMs) is hampered by a lack of harmonized or specific data and datasets which poses a challenge to the design of safe and sustainable NMs and their incorporation into nano-enabled products (NEPs).

INTEGRANO aims to:

• Support decision making in NM development, enabling stakeholders (scientists, material engineers, policymakers) to tackle the SSbD challenge in the NM context

• Promote the design and redesign of NMs and NEPs by reducing R&D and approval lead time, minimising costs and increasing data transparency

• To support industry by reducing research and technological development and innovation risk related to safety and sustainability by enabling impact-based informed investment decisions

UNIMIB is project coordinator of the project and leader of WP3, which aims at nano-tox and nano eco-tox data generation.

Call: HORIZON-CL4-2023-RESILIENCE-01-22

Grant Agreement: 101138414

Project Coordinator: Paride Mantecca (UNIMIB)

UNIMIB WP leader: Maurizio Gualtieri (WP3 Leader)

More information here

BIOMAT

BIOMAT – Open  Innovation Test Bed for Nano-Enabled Bio-Based PUR Foams and composites

The POLARIS Research Center is involved in the European BIOMAT project, funded by the European Commission in the Horizon 2020 framework (Grant Agreement nr.) with the aim of establishing an Open Innovation Test Bed (BIOMAT-TB) with a Single-Entry Point (SEP) . The aim of this project is to accelerate a sustainable European bioeconomy through the development of nanomaterial-based and advanced polyurethane foams (PUR Foams) for various companies (building, construction, automotive, furniture, textiles).

Project ID:953270; Call ID: H2020-EU.2.1.3. – INDUSTRIAL LEADERSHIP – Leadership in enabling and industrial technologies – Advanced materials;   H2020-EU.2.1.2. – INDUSTRIAL LEADERSHIP – Leadership in enabling and industrial technologies – Nanotechnologies

Project coordinator: Dr. Mariana Ornelas (CENTI)

Dissemination Manager: Dr. Pnina Dan (OSM-DAN LTD).

Partner UNIMIB – POLARIS Prof. Paride Mantecca is leader of WP7 – Recycling technologies, nanosafety and regulatory issues with specific focus on Nanosafety and toxicology (Task 7.2).

Further information can be found at the link.

AMROCE – AGAINST CECs (AMR BACTERIA AND ANTIBIOTICS) IN WATER BODIES

AMROCE – AGAINST CECs (AMR BACTERIA AND ANTIBIOTICS) IN WATER BODIES

Antibiotics, pathogens and antimicrobial resistant (AMR) bacteria are contaminants of emerging concern (CECs) in water bodies associated to intensive fish and inland animal farming.  AMROCE aims at reducing antibiotic pollution and spread of AMR bacteria in the entire water cycle through a platform of novel antibiotic-free antimicrobial products. In the project, antimicrobial/antibiofilm fish cage nets and wastewater filtration membranes will be developed through polymer and surface nano-engineering. Marine-derived antimicrobial agents and antibiofilm enzymes will be nano-formulated as alternative to antibiotics for fish and animal feed supplement. Human and environmental nanosafety during the manufacturing and use of the novel nanotechnology-embedded products will be continuously evaluated to anticipate nanosafety issues.

UNIMIB is leader of WP3, which aims at identifying the parameters related to the safety of the nano-formulation process for both workers and users, considering not only the existing regulation, but also the gaps existing in the legislation and norms.

Project Coordinator: Tzanko Tzanov (UPC)

UNIMIB WP/Task leader: Paride Mantecca (WP3)

Please visit the webiste of the project amroce.eu

ASINA – Anticipating Safety Issues at the Design Stage of NAno Product Development

ASINA – Anticipating Safety Issues at the Design Stage of NAno Product Development

Il progetto Horizon 2020 ASINA (Anticipating safety issues at the design stage of nano product development) si propone di implementare strategie di “safe-by-design” per lo sviluppo di nanomateriali intrinsecamente sicuri, che siano a basso rischio, per la salute dell’uomo e dell’ambiente. ASINA è coordinato dal Cnr-ISTEC che vede la partecipazione di 21 membri, tra i quali centri di ricerca, università, SMEs, e oranizzazioni non governative (NGOs) europee e non, afferenti a 8 diversi Paesi europei. Il titolo della call alla quale abbiamo risposto è: “Safe for design: from science to regulation”.

Project Coordinator Prof.  Anna Luisa Costa

Dissemination Manager Dr. Isella Vicini

Partner UNIMIB – POLARIS (Paride Mantecca) is leader of WP2 -MATERIAL SAFETY DESIGN CRITERIA, i cui obbiettivi sono:

  • determinare i design criteria per l’esposizione a NMs, tramite l’identificazione di parametri p-chem (chimico-fisici) che modulano le risposte biologiche in termini di scenari di esposizione
  • determinare i design criteria per l’esposizione a NMs, tramite l’identificazione di parametri p-chem (chimico-fisici) che modulano risposte biologiche in seguito ad un evento molecolare iniziale e/o specifici step presenti all’interno di adverse outcome pathways (AOPs) già caratterizzati
  • utilizzo e adattamento di frameworks per calcolo del rischio (risk assessment) nel contesto di ASINA, fornendo indicazioni pratiche per il read-across di materiali

Per informazioni:

ASINA Web site

CNR Web site

Twitter